Developmental Psychology

Fadeout in an Early Mathematics Intervention: Constraining Content or Preexisting Differences?
Drew H. Bailey, Tutrang Nguyen, Jade Marcus Jenkins, Thurston Domina, Douglas H. Clements, and Julie S. Sarama
Online First Publication, August 8, 2016. http://dx.doi.org/10.1037/dev0000188

CITATION
Fadeout in an Early Mathematics Intervention: Constraining Content or Preexisting Differences?

Drew H. Bailey, Tutrang Nguyen, and Jade Marcus Jenkins
University of California, Irvine

Thurston Domina
University of North Carolina at Chapel Hill

Douglas H. Clements and Julie S. Sarama
University of Denver

A robust finding across research on early childhood educational interventions is that the treatment effect diminishes over time, with children not receiving the intervention eventually catching up to children who did. One popular explanation for fadeout of early mathematics interventions is that elementary school teachers may not teach the kind of advanced content that children are prepared for after receiving the intervention, so lower-achieving children in the control groups of early mathematics interventions catch up to the higher-achieving children in the treatment groups. An alternative explanation is that persistent individual differences in children’s long-term mathematical development result more from relatively stable preexisting differences in their skills and environments than from the direct effects of previous knowledge on later knowledge. We tested these 2 hypotheses using data from an effective preschool mathematics intervention previously known to show a diminishing treatment effect over time. We compared the intervention group to a matched subset of the control group with a similar mean and variance of scores at the end of treatment. We then tested the relative contributions of factors that similarly constrain learning in children from treatment and control groups with the same level of posttreatment achievement and preexisting differences between these 2 groups to the fadeout of the treatment effect over time. We found approximately 72% of the fadeout effect to be attributable to preexisting differences between children in treatment and control groups with the same level of achievement at posttest. These differences were fully statistically attenuated by children’s prior academic achievement.

Keywords: mathematics achievement, early childhood, interventions

Supplemental materials: http://dx.doi.org/10.1037/dev0000188.supp

Early childhood educational interventions aim to provide children, often those who are economically disadvantaged, with essential skills for academic and school readiness. Many of these interventions have raised disadvantaged children’s academic achievement in the short-term. Unfortunately, a consistent finding across early childhood interventions targeting mathematics and other achievement-related skills is that initial treatment effects fade over time, with children not receiving the intervention catching up to children who did (Bailey, Duncan, Odgers, & Yu, 2015; Clements, Sarama, Wolfe, & Spitzer, 2013; Currie & Thomas, 1995; Leak et al., 2010; Puma et al., 2010). Understanding the causes of this fadeout pattern may offer key insight into how to increase the persistence of early childhood educational intervention treatment effects. However, because the factors that likely lead treatment effects to diminish or persist over time—most notably children’s posttreatment skills and their posttreatment school environments—are seldom randomly assigned, the mechanisms underlying fadeout of the treatment effect on children’s achievement are not well understood.

The “Constraining Content” Hypothesis

The current study differentiates between two broad explanations of fadeout. First, a prominent explanation is that fadeout is attributable to school environmental factors that fail to successfully build on the skills children gained during the intervention. Early childhood educational interventions primarily target low-income children who, after the intervention, often enter lower resourced...
elementary schools with lower quality instruction (Crosnoe & Cooper, 2010; McLoyd, 1998; Pianta, Belsky, Houts, Morrison, & the National Institute of Child Health and Human Development [NICHD] Early Child Care Research Network, 2007; Stipek, 2004). Specifically, this means that many teachers may be unaware that some of their students have already mastered the material that they intend to cover in class (Sarama & Clements, 2015). Therefore, to ensure that all children receive basic skills training, elementary school teachers may not teach the kind of advanced content that children are prepared for after receiving an effective early mathematics intervention (Bodovski & Farkas, 2007; Crosnoe et al., 2010; Engel, Claessens, & Finch, 2013). Engel and colleagues (2013) found that most kindergarten teachers taught mathematics content at a level appropriate only for the lowest achieving students. Teachers reported spending more time on basic skills, such as counting and shape recognition, than any other skills, even though the majority of the children had already mastered these skills at school entry.

Taken together, these ideas suggest that a lack of exposure to advanced content may impose a ceiling on higher achieving children's subsequent achievement trajectories. Thus, children who benefit from early mathematics interventions may experience flatter mathematics achievement trajectories in subsequent years. In contrast, children who did not receive the intervention and thus enter kindergarten with low levels of early mathematics skills may benefit more from basic instruction and catch up to their higher achieving peers. We refer to this hypothesis for fadeout of treatment effects in early mathematics interventions as the constraining content hypothesis: Although children's school readiness skills may improve from high-quality preschool interventions, elementary school instruction remains the same, thus constraining higher achieving children’s subsequent learning opportunities.

However, evidence for the constraining content explanation of fadeout is ambiguous. Inconsistent with a strong equalizing role of mathematics instruction implied by the constraining content hypothesis, gaps between socioeconomically advantaged children's and socioeconomically disadvantaged children’s mathematics achievement scores do not undergo large changes during the school years in kindergarten and first grade (Downey, Von Hippel, & Broh, 2004). In this large correlational study, a SD of socioeconomic status (SES) was associated with 2.40 additional points on a mathematics achievement test on the first day of kindergarten. This gap grew by only .05 points per month during kindergarten and shrank by only .05 points per month during first grade. These associations between SES and growth rates were statistically significant in both grades, but were small compared with the initial SES gap and cancelled each other out.

One correlational analysis indicated that children who subsequently received higher quality instruction or lower class sizes showed less persistent positive effects of attending preschool than their peers with lower quality subsequent school environments (Magnuson, Ruhm, & Waldfogel, 2007). Most relevantly, a recent analysis using stronger experimental data found no evidence that treatment effects for two early childhood educational interventions were more persistent for children in higher quality kindergarten and first-grade classrooms (Jenkins et al., 2015). Still, it remains possible that a large majority of early elementary mathematics instruction is aimed at a low enough level that children in control conditions of early intervention studies will catch up to their peers who received the treatment. Of course, the current study cannot address whether substantial improvements in the quality of schools would change the long-term effectiveness of early academic interventions. Thus, the focus of the current study is on the narrower question of whether fadeout of the treatment effects of an early mathematics intervention can be attributed to the low-level (and therefore constraining) content children encounter in their subsequent schooling.

The Preexisting Differences Hypothesis

As noted previously, the constraining content hypothesis posits that fadeout is attributable to environmental factors that reduce the skill variation among treatment and control students after the intervention ends. Alternatively, fadeout might result from relatively stable differences between children that cause them to revert back to their previous individual achievement trajectories after an effective early childhood intervention. These factors likely include a combination of domain-general cognitive abilities, relatively stable academic skills, motivation, home conditions and other environmental conditions that vary between children, and other factors that affect children’s mathematics achievement across time.

One recent study provides empirical support for the preexisting differences hypothesis. The authors found that relatively stable factors across development explained the correlations among children’s mathematics achievement scores at different time points, as opposed to the unique effects of children’s previous achievement on their later achievement (Bailey, Watts, Littlefield, & Geary, 2014). However, both appeared to influence children’s mathematical development. If this is true, then children’s higher mathematics achievement at the end of an effective early mathematics intervention might subsequently drift to levels that would be predicted based on their preexisting skills, motivation, and environmental conditions. Put differently, this work suggests that even though children’s skills are susceptible to early school-based intervention, their longer term mathematics outcomes are primarily influenced by factors that are outside the scope of early mathematics interventions, and thus will not be substantially altered by them. We refer to this hypothesis for fadeout of treatment effects in early mathematics interventions as the preexisting differences hypothesis.

Indeed, a number of child characteristics that are not specifically targeted by early mathematics interventions also likely contribute to children’s mathematical development. These characteristics include family income (Duncan, Morris, & Rodrigues, 2011) and other aspects of children’s home environments (Blevins-Knabe & Musun-Miller, 1996; Levine, Suriyakham, Rowe, Huttenlocher, & Gunderson, 2010), working memory (Geary, Hoard, Nugent, & Bailey, 2012; Szücs, Devine, Soltesz, Nobes, & Gabriel, 2014), attention (Zentall, 2007), beliefs and expectancies (Meece, Wigfield, & Eccles, 1990), motivation (Murayama, Pekrun, Lichtenfeld, & vom Hofe, 2013), and general intelligence (Deary, Strand, Smith, & Fernandes, 2007). If these factors generate most of the variance in individual differences in children’s later mathematics learning, effects of early childhood interventions that do not permanently affect these factors will decay over time.

The constraining content and preexisting differences hypotheses generate different predictions about children’s subsequent achievement trajectories following the conclusion of an effective early
mathematics achievement intervention. The constraining content hypothesis posits that a lack of advanced instruction in early schooling imposes a ceiling on higher achieving children’s mathematics learning. This ceiling will be present both for children whose skills were boosted by the intervention as well as control-group children with similar math skills to treatment-group children following the intervention.

The preexisting differences hypothesis presumes that children in the control group with similar scores on the postintervention assessment to children in the treatment group are advantaged on preexisting differences, having reached the same level of achievement without the benefit of the effective early mathematics intervention. If this is true, the relatively high-achieving control students who enter kindergarten with similar mathematics achievement to their peers in the treatment group are predicted to experience greater achievement gains during the kindergarten year. We illustrate the conflicting predictions of the constraining content hypothesis and the preexisting differences hypothesis in Figure 1.

The existence of fadeout does not imply that both of these hypotheses must be true. In principle, either factors that make children more similar after the intervention ends (specifically, the constraining content) or preexisting differences between children could account for the entire fadeout effect. Based on prior research, we hypothesize that fadeout is attributable to some combination of these factors, but that the majority of the fadeout effect can be explained by preexisting differences between children influencing children’s long-term mathematics outcomes.

We tested these two hypotheses using data from an effective early mathematics intervention with an initial treatment effect that faded out over time. Specifically, we compared children from the control group with similar postintervention achievement scores to children in the treatment group, testing whether their subsequent learning trajectories differed.

Figure 1. Predicted trajectories for treatment and higher achieving control children based on the constraining content and preexisting differences hypotheses. The gray line in the left panel represents an artificial ceiling imposed by the low-level content of instruction, which constrains the later trajectories of children in the treatment group, according to the constraining content hypothesis. The gray line in the right panel represents the trajectory the treatment group would have been predicted to follow, had they not received treatment, according to the preexisting differences hypothesis. The key difference between the two hypotheses is that the preexisting differences hypothesis predicts that the groups will differ in their trajectories following the posttest, whereas the constraining content hypothesis predicts that the groups will have similar trajectories.

Method

Participants

The current study used data from the Technology-enhanced, Research-based, Instruction, Assessment, and professional Development (TRIAD) intervention evaluation (Clements, Sarama, Spiller, Lange, & Wolfe, 2011; Clements et al., 2013) designed to investigate the effects of an early mathematics curriculum tested in 42 low-resource schools across two sites. The intervention in the prekindergarten year included the Building Blocks mathematics curriculum and professional development for teachers implementing the curriculum. Schools were rank-ordered on their school-wide standardized mathematics scores within each site, creating blocks with three schools with similar scores. They were then randomly assigned within block to one of three treatment groups: (1) prekindergarten only treatment; (2) prekindergarten to first grade treatment; and (3) control condition. In prekindergarten, the two treatment groups received identical intervention, but in the prekindergarten to first grade treatment conditions, teachers had knowledge of the prekindergarten intervention and were provided with strategies to build upon that knowledge. Our primary analyses included children who were in the prekindergarten only treatment and the control condition, because the largest fadeout effect occurred between these groups.

Professional development for teachers in the treatment group was designed to inform them of the rationale for the instructional design of the curriculum’s activities, each of which was based on empirically supported developmental progressions for children learning mathematics. Children and teachers in the control group received alternative curricula that also included professional development. Children were assessed immediately after the intervention and then 1 year later at the end of the kindergarten year. Our resulting sample included 396 children in the control group and 484 children in the treatment group who had valid mathematics achievement scores in prekindergarten and kindergarten for a total of 779 children. Students came predominantly from low-income households; 85% of students qualified for free or reduced price lunch. Descriptive statistics for this sample are presented in Table 1.

Only children with mathematics achievement scores at all three time points were included in the analyses. This requirement dropped 101 children who were missing scores at the end of kindergarten because of attrition. We used the Full Information Maximum Likelihood (FIML) procedure in Stata 13.0 to account for missing data (Enders, 2001). We compared the descriptive statistics of covariates for the included and excluded sample and found that there were significant differences between the samples on end of prekindergarten mathematics achievement, age, literacy and language achievement scores, and whether the mother attended some college. This information is presented in Appendix Table A (see online supplementary material). As a robustness check and to ensure that our missing data strategy did not bias our final results, we alternatively used missing dummy variables in our

1 The Massachusetts and New York research sites used a different curriculum for the control group. For more detail on curricula in the control classrooms, see Clements et al. (2011).
models and attained similar results. These analyses are included in Appendix Table B (see online supplementary material).

Our analyses referred to three different key time points: The pretest is just before the start of the prekindergarten intervention; posttest is the end of prekindergarten in the spring; and follow-up is 1 year after the posttest in the spring of kindergarten. The curriculum produced substantial gains in the treatment group with an effect size of .72 (Clements et al., 2011); this treatment effect persisted into the third year of the study, but the effect diminished over time (Clements et al., 2013).

Measures

Mathematics achievement. Children’s mathematics achievement was assessed using the Research-based Early Mathematics Assessment (REMA). The measure is validated and specifically designed for early mathematics (Clements, Sarama, & Liu, 2008). It contained two sections: Part A assessed children’s counting, number recognition, and addition and subtraction skills, and Part B assessed children’s patterning, measurement, and shape recognition skills. This measure defined mathematics achievement as a latent trait using the Rasch model, which produced a score with a consistent metric that places children on a common ability scale (Bond & Fox, 2001; Clements et al., 2011; Linacre, 2005; Watson, Callingham, & Kelly, 2007). The Rasch model allowed for accurate comparisons of scores across ages and has been particularly useful for when preintervention scores differ between groups (Clements et al., 2011; Wright & Stone, 1979). Test items are ordered by difficulty, and testing is concluded after four consecutive incorrect answers.

Preexisting differences. To test which preexisting differences statistically attenuated matched control children’s higher follow-up scores, we included measures of SES and academic skills as covariates. We describe these measures briefly here. For a more thorough discussion of these measures, see Sarama, Lange, Clements, and Wolfe (2012).

SES. Measures of children’s SES included whether the child received free or reduced price lunch measured in the kindergarten year (dummy coded as 0 or 1) and mother’s highest level of education. For mother’s level of education, we created dummy coded variables indicating the highest level of formal schooling the mother attained: no high school, high school, some college, or college (with the mother attaining a high school diploma as the reference group).

Literacy skills. Language and literacy skills were included as measures of children’s reading achievement, which may directly influence students’ mathematics learning, and also serve as proxies for students’ more general cognitive skills. Literacy skills were measured in the spring of Pre-K with the Phonological Awareness Literacy Screening—PreK edition (PALS—PreK; Invernizzi, Sullivan, Swank, & Meier, 2004) and MCLASS: CIRCLE (Landry, 2007). Both are commonly used literacy measures for early childhood programs, measuring recognition of upper and lowercase letters. We used standardized scores for these measures in all analyses.

Language skills. Language skills were measured in the fall of kindergarten with the Renfrew Bus Story—North American Edition (RBS; Glasgow & Cowley, 1994). This measure assessed oral language using narrative retell. The narrative retell required children to remember the key concepts of the story, know the meaning of the words representing the concepts to correctly use them in the retell, and understand the story structure to use the words and concepts in the appropriate sequence. Scores from this assessment provided indicators of aspects of children’s oral language, such as sentence length and complexity of utterances (Sarama et al., 2012). Trained coders transcribed and coded the responses based on three primary subtests: information, complexity, and sentence length. Three additional subtests included two inferential reasoning items and independence. The information subtest is scored by how many of the 32 concepts from the story the children used in their narrative retell. The complexity subtest is scored as the number of complex utterances used in children’s narrative retell. Sentence length is scored as the mean of the child’s five longest utterances. The inferential reasoning subtest asked children to answer two questions at the end of the assessment. Responses were scored based on the degree to which the child demonstrated causal reasoning, made reference to the story, showed evidence of empathizing with characters in the story, and showed evidence of practical and moral reasoning in the retell. The independence score is based on the amount of guidance or prompting the child needed from the test administrator to retell the story (Sarama et al., 2012).

Table 1

Sample Characteristics Before Matching on Posttest Mathematics Achievement

<table>
<thead>
<tr>
<th>Variable</th>
<th>Before matching</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment</td>
<td>Control</td>
<td>Treatment</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean/% of sample</td>
<td>SD</td>
<td>Mean/% of sample</td>
<td>SD</td>
<td>Difference in means</td>
</tr>
<tr>
<td>Mathematics achievement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretest (before Pre-K)</td>
<td>-3.25</td>
<td>.86</td>
<td>-3.17</td>
<td>.80</td>
<td></td>
</tr>
<tr>
<td>Posttest (end of Pre-K)</td>
<td>-1.86</td>
<td>.65</td>
<td>-2.27</td>
<td>.75</td>
<td>**</td>
</tr>
<tr>
<td>Follow-up (end of K)</td>
<td>-1.07</td>
<td>.66</td>
<td>-1.19</td>
<td>.69</td>
<td>*</td>
</tr>
<tr>
<td>Child characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>.50</td>
<td>.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>4.32</td>
<td>.35</td>
<td>4.38</td>
<td>.35</td>
<td>*</td>
</tr>
<tr>
<td>Free and reduced price lunch</td>
<td>.71</td>
<td>.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>.08</td>
<td>1.01</td>
<td>-.13</td>
<td>1.07</td>
<td>*</td>
</tr>
<tr>
<td>Literacy</td>
<td>-.01</td>
<td>1.02</td>
<td>.06</td>
<td>1.01</td>
<td>*</td>
</tr>
<tr>
<td>Maternal education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No high school</td>
<td>.11</td>
<td>.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>.23</td>
<td>.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some college</td>
<td>.30</td>
<td>.23</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>College</td>
<td>.11</td>
<td>.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>418</td>
<td>361</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Mathematics achievement scores are Rasch scores. Language and literacy scores are z scores. Age is in years, and all other variables are proportions.

\(^{*}p < .05. \quad ^{**}p < .01\)
The raw score was then converted to a standardized score and a Rasch score. We used children’s Rasch scores in our analyses.

Schools. We controlled for unmeasured preschool and elementary school factors (e.g., quality) by including fixed effects for school random assignment block.

Analytic Strategy

The analysis plan involved comparing the treatment group to a subset of the control group selected by matching children with similar scores on the posttest assessment immediately following the intervention to test both the preexisting differences and containing content hypotheses. Each treated child was matched to a corresponding child in the control group who had a nearly identical posttest score, within a random assignment block.

The reason we matched children on their posttest score was to induce differences between treatment and control groups on both observed and likely unobserved characteristics. This manufactured differences in mathematics achievement (e.g., pretest scores), along with socioeconomic factors, such as mother’s education and literacy. Because there was a treatment effect, the posttest matched controls were also higher achieving at the pretest than the matched treatment children (Figures 1 and 2). Table 2 displays the means of the matched treatment and control groups. All children had the same level of achievement at posttest because they were matched on scores at that time point, but children in the matched control group had higher average mathematics achievement at the follow-up.

We then were able to test whether students’ preexisting differences explain fadeout by comparing the achievement of students in these matched treatment and control groups at follow-up. To test for the specific factors accounting for differences in these groups’ trajectories between posttest and follow-up, we regressed follow-up achievement on the matched group (matched treatment = 1; matched control = 0) and different sets of predictors, adjusting for child age at pretest. If the constraining content hypothesis explained fadeout, there will be no differences between the matched treatment and control groups at follow up. This is because the instruction children receive following the intervention will similarly affect children in the control and treatment groups with the same level of achievement at the posttest.

We conceptualized the fadeout effect as a combination of two sets of factors:

1. **preexisting differences** (likely influenced by a combination of genes, early environments, and relatively stable home environmental conditions, although this cannot be directly tested in the current study), which *differ* between children in the treatment and control groups with the same level of achievement at the posttest, and would subsequently cause the matched control children to outperform the matched treatment children, and

2. the low level of mathematics instruction children receive following the intervention, which would similarly affect children in the control and treatment groups with the same level of achievement at the posttest.

Table 2

Sample Characteristics After Matching on Posttest Mathematics Achievement

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment</th>
<th>Control</th>
<th>Difference in means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics achievement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretest (before pre-K)</td>
<td>-3.29</td>
<td>-2.95</td>
<td>p < .01</td>
</tr>
<tr>
<td>Posttest (end of pre-K)</td>
<td>-1.90</td>
<td>-1.90</td>
<td>.54</td>
</tr>
<tr>
<td>Follow-up (end of K)</td>
<td>-1.11</td>
<td>-1.50</td>
<td>.68</td>
</tr>
<tr>
<td>Child characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>.50</td>
<td>.49</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>4.32</td>
<td>4.39</td>
<td>p < .01</td>
</tr>
<tr>
<td>Free and reduced price lunch</td>
<td>.72</td>
<td>.69</td>
<td></td>
</tr>
<tr>
<td>Language score</td>
<td>.07</td>
<td>.03</td>
<td>1.04</td>
</tr>
<tr>
<td>Literacy score</td>
<td>.03</td>
<td>.01</td>
<td>p < .01</td>
</tr>
<tr>
<td>Maternal education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No high school</td>
<td>.11</td>
<td>.09</td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>.23</td>
<td>.23</td>
<td></td>
</tr>
<tr>
<td>Some college</td>
<td>.31</td>
<td>.22</td>
<td>*</td>
</tr>
<tr>
<td>College</td>
<td>.10</td>
<td>.17</td>
<td>*</td>
</tr>
<tr>
<td>N</td>
<td>406</td>
<td>251</td>
<td></td>
</tr>
</tbody>
</table>

Note. Mathematics achievement scores are Rasch scores. Language and literacy scores are t scores. Age is in years, and all other variables are proportions.

3 We use the user-created module PSMATCH2 (Leuven & Sianes, 2003) in Stata 13.0 to match children. Our results were robust to a variety of matching specifications displayed in Appendix Tables C and D (see online supplementary material).
effects, whereas the second explanation is a restatement of the constraining content hypothesis.

The logic and equations underlying the following calculations are displayed in Figure 2.

To estimate the percent of variance attributable to stable factors that differ between children and factors that similarly affect children, we first estimated the fadeout effect. A major advantage of the measure of mathematics achievement used in the current study is that performance is characterized by a Rasch score, which allows us to directly compare scores across years. Thus, the fadeout effect can be calculated as the Rasch score achievement difference between the unmatched original treatment and control groups at the posttest minus the Rasch score achievement difference between the unmatched groups at the follow-up assessment. Then, we calculated the difference between the posttest matched control group and the posttest matched treatment group at the follow-up assessment. Finally, we divided the latter group difference by the total fadeout effect to estimate the proportion of fadeout attributable to preexisting differences.

To test whether subsequently aligned instruction reduced the proportion of fadeout explained by the constraining content effect, we replicated the analysis and matched group comparisons described previously, comparing the control group to the second treatment group, who received the follow-through treatment.

As an additional test of predictions of the constraining content hypothesis, we replicated the analysis and matched group comparisons described previously on children who performed above and below the median score at the pretest. If a ceiling imposed by the low material to which they are exposed and lack opportunities to learn more difficult material to which they are exposed and lack opportunities to learn more difficult material. In contrast, the higher achieving, posttest matched treatment children may be hindered some by this ceiling, while lower achieving children from both groups will not.

(2) The lower-achieving matched control group will catch up to the higher achieving matched control group between the posttest and the follow-up assessments. Indeed, the constraining content hypothesis, as depicted in Figure 1, predicts no fadeout during this developmental period unless lower achieving control children are catching up to the higher achieving treatment and control children. The prediction unique to the constraining content hypothesis, though, is that the lower achieving control children will catch up to the higher achieving control children during this time (both hypotheses make the same prediction about lower achieving control children learning more than higher achieving treatment children).

To indirectly examine which preexisting differences (SES, achievement-related skills, preschool quality, or some combination) most contributed to fadeout, we estimated models represented by the following equations at the time of the follow-up assessment:

\[\text{Achievement}_{i, \text{Follow-up}} = a_1 + b_1 \text{Matched}_{i, \text{Posttest}} + b_2 \text{Age}_{i, \text{Pretest}} + e_i \]

where \(\text{Achievement}_{i, \text{Follow-up}} \) is the math achievement of child \(i \) at the time of follow-up; \(\text{Matched}_{i, \text{Posttest}} \) is the child’s group (posttest matched treatment or control, with treatment coded as 1); \(\text{Age}_{i} \) serves as a control variable for child age at first test administration at pretest. \(a_1 \) is a constant and \(e_i \) is an error term. \(b_1 \), the difference between the matched control and treatment groups at posttest, is our key coefficient in all models.

In subsequent models, the covariates that attenuate the matched group difference are most highly correlated with the preexisting differences that contribute to fadeout. We first tested the extent to which preexisting differences in SES attenuate the matched group difference in the following model:

\[\text{Achievement}_{i, \text{Follow-up}} = a_1 + b_1 \text{Matched}_{i, \text{Posttest}} + b_2 \text{Age}_{i, \text{Pretest}} + b_3 \text{Child}_{i} + b_4 \text{Family}_{i} + e_i \]

where \(\text{Child}_{i} \) and \(\text{Family}_{i} \) are child and family characteristics all measured prior to or at the time of pretest. These characteristics include whether the child qualifies for free or reduced price lunch and mother’s level of education. SES is not an exogenous source of variation, so we were not able to estimate the effect of SES per se on fadeout. However, this model allowed us to test how much the preexisting differences that contribute to fadeout are associated with SES.

Next, we tested how much children’s academic skills, including measures of literacy and language skills and children’s scores on the mathematics pretest, attenuated the matched group difference:

\[\text{Achievement}_{i, \text{Follow-up}} = a_1 + b_1 \text{Matched}_{i, \text{Posttest}} + b_2 \text{Literacy}_{i, \text{Posttest}} + b_3 \text{Language}_{i, \text{Posttest}} + b_4 \text{Math}_{i, \text{Posttest}} + e_i \]

where \(\text{Literacy}_{i, \text{Posttest}} \) and \(\text{Language}_{i, \text{Posttest}} \) are the collection of literacy and language skills that child \(i \) has acquired as of the posttest in the fall of kindergarten. \(\text{Math}_{i, \text{Pretest}} \) represents children’s mathematics skills at the time of the pretest, before prekindergarten entry. Again,
we do not consider these measures as exogenous; they probably also indicate individual differences in more general cognitive abilities, along with motivation, and may be influenced by the home environment as well. For these models we hypothesized that the coefficient on the matched group would be close to zero and that the coefficients on the preexisting differences, \(b_3, b_5, \) and \(b_7 \) would have significant and positive effects for children in the matched treatment group. We estimated an additional model with preschool block fixed effects (Model 4; equation not shown). SEs have been adjusted to account for lack of independence from the block clustering of schools.

The final model we estimated is the following with the inclusion of all variables described previously:

\[
\text{Achievement}_{\text{Follow-up}} = a_1 + b_1 \text{Matched}_{\text{Posttest}} + b_2 \text{Age}_i \\
+ b_3 \text{Child}_i + b_4 \text{Family}_i + b_5 \text{Literacy}_{\text{Posttest}} + b_6 \text{Language}_{\text{Posttest}} \\
+ b_7 \text{Math}_{\text{Pretest}} + \mu_i \text{Block}_{\text{Pretest}} + e_{it}
\]

(5)

where Block\(_{\text{Pretest}}\) represent fixed effects for preschool assignment block. We hypothesized that the matched group difference would be close to zero in this model.

Results

Matched Group Comparison

Figure 3 presents the trajectories of children in the treatment and control groups before matching. In the original, unmatched sample, children in the treatment group outperformed children in the control group at the posttest assessment (\(p < .001 \)). This effect faded out but remained statistically significant at the follow-up assessment (\(p = .014 \)).

Figure 4 presents the trajectories of children in the treatment and control groups after matching. In the matched sample, children in both groups performed identically at the posttest assessment, and the matched control group significantly outperformed the treatment group at the follow-up assessment (\(p = .001 \)). This pattern of results is consistent with the preexisting differences model shown in Figure 1. This finding falsifies the constraining content hypothesis, which predicts that the fadeout effect is primarily because of school and classroom characteristics (i.e., instruction) that similarly affect children in the control and treatment groups with the same level of achievement at the posttest.

We calculated the fadeout effect based on the equation in Figure 1. As described previously, the fadeout effect can be calculated as the Rasch score achievement difference between the unmatched original, complete treatment and control groups at the posttest minus the Rasch score achievement difference between the unmatched groups at the follow-up assessment (\((-1.86--2.27)--(-1.07--1.19))\), or .29; values displayed in Figure 3). This represents the treatment effect fadeout at follow-up from the original randomized trial (reported in Clements et al., 2013). Then, we calculated the difference between the posttest matched control group and the posttest matched treatment group at the follow-up assessment (\((-0.90--1.11))\), or .21; Figure 4). This difference (minus the group difference at the posttest, which is 0, because the groups are matched for posttest mathematics achievement) is the part of the fadeout effect generated by preexisting differences, as children began kindergarten with the same mean level of math skills but “induced” preexisting differences in family and child factors. This analysis estimates how much these induced preexisting differences at posttest explain the divergence of the matched groups’ scores at follow-up, and thus estimates the effect of preexisting differences on fadeout. Finally, we divided this matched group difference by the fadeout effect from the original treatment and control groups (.21/.29, or .72). Using this calcula-

Figure 3. Observed mathematics achievement trajectories of the intervention groups before matching on posttest mathematics achievement. The graph displays the mathematics achievement trajectories of the children in the treatment and control groups before they were matched. Children in the treatment group outperformed the children in the control group at posttest and follow-up. \(^* p < .10; ^{**} p < .05; ^{***} p < .01.\)

Figure 4. Observed mathematics achievement trajectories of the intervention groups after matching on posttest mathematics achievement. The graph displays the mathematics achievement trajectories of the children in the treatment and control groups after they were matched. Children in the matched control group outperformed children who were matched in the treatment group. Groups had the same level of achievement at posttest because they were matched on scores at that time point. \(^* p < .10. ^{**} p < .05. ^{***} p < .01.\)
tion, we estimate that approximately 72% of the fadeout effect may be attributable to preexisting differences between children in the treatment and control groups with the same level of achievement at the posttest.\(^7\)

Robustness Tests

Comparison with follow-through sample. We replicated the analysis and matched group comparisons described previously, comparing the control group to the second treatment group who received the follow-through treatment. Group means before and after matching are displayed in Appendix Tables F and G (see online supplementary material). A similar pattern of results was observed, with successful random assignment before matching and a significant matched control group advantage at the pretest and follow-up assessments. These differences, along with the fadeout effect and the matched group difference at the follow-up, are displayed in Table 3. The matched group difference was similar to, but slightly smaller than the matched group treatment-control comparison described previously (.16 vs. .21; Table 3), consistent with the hypothesis that preexisting differences contributed to fadeout in both comparisons. The fadeout effect was also smaller in the treatment with follow-through versus control comparison than in the treatment versus control comparison (.22 vs. .29, Table 3). Therefore, the proportion of fadeout attributable to preexisting differences was similar in the treatment with follow through versus control comparison to the value observed in the treatment versus control comparison (.73 vs. .72, Table 3).

Comparison within higher and lower achieving groups. We also replicated the analysis and matched group comparisons described previously on children in the treatment and control groups who performed above and below the median score at the pretest. Group means before and after matching are displayed in Appendix Tables H and I (see online supplementary material). A similar pattern of results was observed in both groups (as with the previous two comparisons), with successful random assignment before matching and a significant matched control group advantage at the pretest and follow-up assessments in both higher and lower achievers. The treatment effects, follow-up differences, and fadeout effects after matching were very similar across achievement levels, shown in Table 3 and illustrated in Figure 5. Contrary to predictions of the constraining content hypothesis, the matched group difference at the follow-up assessment was actually larger among higher-than-previously-achieving students (.24 vs .16, Table 3). Also contrary to predictions of the constraining content hypothesis, we did not observe evidence of the lower achieving matched control children catching up to the higher achieving matched control children in the period between the posttest and follow-up assessments: the matched higher achieving control children gained .98 Rasch score units between the posttest and the follow-up assessment, while the matched lower achieving control children gained .99 Rasch score units (Figure 5; see online Appendix Tables H and I).

Which Preexisting Differences Matter?

Table 4 displays the results of the regression models testing for which variables attenuate the difference between the matched treatment and control groups at the follow-up assessment. All models correspond to the equations written in the previous analysis plan. Model 1 shows that adjusting for age the matched groups differed, and that age was positively related to children’s follow-up mathematics achievement. Older children had higher pretest mathematics achievement scores, so older children in the control group performed more similarly to children in the treatment group at the posttest mathematics achievement assessment. The magnitude of the matched group difference was reduced by 29% after adding measures of SES (Model 2). Qualifying for free or reduced price lunch was negatively associated with children’s achievement, while having a mother with a college education was positively associated with achievement. Compared with the baseline model, SES explained an additional 6% of the variance in children’s follow-up mathematics achievement scores.

When we controlled for language, literacy, and mathematics achievement in Model 3, the group difference was reduced by 85% relative to the baseline model, and was no longer statistically significant. Compared with the baseline model, the achievement measures by themselves explained an additional 27% of the variance in children’s follow-up mathematics achievement scores. Thus, the fadeout effect seems to be largely explained by preexisting differences correlated with children’s academic achievement.

Adjusting for preschool block in Model 4 yielded very similar results to Model 3; the matched group effect and parameter estimates for the achievement variables were very similar in both models, suggesting that public school quality was not driving the relations between the matched treatment and control difference and children’s later mathematics achievement. This model explained an additional 32% of the variance in children’s follow-up mathematics achievement scores relative to the baseline model. When SES, language, literacy, mathematics, and preschool block were all included in the same model (Model 5), the difference between the matched groups was completely eliminated. Literacy, language, and mathematics scores and whether the child’s mother had a college education had statistically significant effects on children’s follow-up mathematics achievement. Taken together, these results suggest that factors related to children’s language, literacy, and mathematics scores accounted for much of the difference between the matched groups’ mathematics achievement at the follow-up assessment.

Discussion

In the present study, we sought to test both the constraining content hypothesis and the preexisting differences hypothesis to understand the processes underlying the fadeout of the treatment effect of an early mathematics intervention. We found that preexisting differences contribute substantially to fadeout (Table 3; Figures 2, 4, and 5). Children in the matched control group outperformed children in the matched treatment group a year after the intervention’s end, and this difference was approximately 3/4 of the size of the fadeout effect. This suggests that preexisting differences in children and their home environments explain more...

\(^7\) Note that this calculation is a rough estimate of proportion of fadeout because of preexisting differences because it is composed of fadeout estimates from the entire study sample and a matched subsample.
of the fadeout effect than school environmental factors like generally low levels of classroom instruction. To the extent that groups were “undermatched” on their posttest mathematics achievement because of measurement error (see Shadish, Cook, & Campbell, 2002, p. 120), the treatment group’s true posttest mathematics achievement is higher than the control group’s, and the subsequent matched group trajectory difference (m_2, in Figure 2) is underestimated. Therefore, our estimate may be an underestimate of the proportion of the fadeout effect attributable to preexisting differences between children. These results are not inconsistent with the possibility that the constraining content hypothesis explains some or all of the remaining fadeout effect.

There was less total fadeout in the comparison of the treatment group with a follow-through intervention, but the proportion of fadeout explained by preexisting differences was almost identical in this comparison as in the comparison of the other treatment group to the control group. Thus, we did not find evidence that the follow-through intervention decreased the proportion of the fadeout effect attributable to the constraining content. Furthermore, the consistency of the effect of preexisting differences among higher and lower achievers, along with the lack of catch-up by the lower achieving control children between the posttest and follow-up assessments ran contrary to predictions of the constraining content hypothesis.

The matched group difference at the follow-up assessment was almost fully eliminated after controlling for children’s literacy, reading, and mathematics achievement test scores, consistent with the hypothesis that individual differences in relatively stable achievement-related skills are the primary influences on children’s mathematics learning across time. The current study does not allow us to identify which specific factors have the largest effects on children’s mathematics learning: for example, do individual differences in literacy per se influence children’s mathematics learning, or are they both influenced by domain general cognitive abilities and stable environmental factors, such as SES? We speculate based on previous work that all of these factors matter, but our results speak only to the net importance of these relatively stable factors unaffected by early mathematics interventions for later mathematics learning: Even for groups matched on posttest mathematics achievement, subsequent mathematics achievement was strongly predicted by previous mathematics achievement (Table 4, Models 3–5). It is difficult to conceptualize how earlier mathematics achievement would directly impact later mathematics achievement, after matching on intermediate mathematics achievement. We cannot rule out the possibility of certain pathways through which this might happen; for example, if there are sensitive periods for the development of children’s motivation, then children’s mathematics motivation could be substantially impacted by their mathematical skills prior to preschool entry, independently of whether their skills are substantially boosted during preschool. However, the preexisting achievement effects likely indicate the importance of preexisting differences in skills and environments unaffected by the intervention for mathematics learning across development.

Implications for Research on Fadeout and Mathematical Development

Our study has important implications for future research on the mechanisms underlying fadeout and persistence of early childhood educational intervention effects. Primarily, the current study high-

Table 3

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Posttest difference (t_1)</th>
<th>Follow-up difference (t_2)</th>
<th>Fadeout effect ($t_1 - t_2$)</th>
<th>Matched follow-up difference (m_2)</th>
<th>Proportion of fadeout explained by m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. control</td>
<td>.41</td>
<td>.12</td>
<td>.29</td>
<td>.21</td>
<td>.72</td>
</tr>
<tr>
<td>Follow-through vs. control</td>
<td>.39</td>
<td>.17</td>
<td>.22</td>
<td>.16</td>
<td>.73</td>
</tr>
<tr>
<td>Higher-achieving treatment vs. control</td>
<td>.40</td>
<td>.14</td>
<td>.26</td>
<td>.24</td>
<td>.92</td>
</tr>
<tr>
<td>Lower-achieving treatment vs. control</td>
<td>.42</td>
<td>.16</td>
<td>.26</td>
<td>.16</td>
<td>.62</td>
</tr>
</tbody>
</table>

Note. Values can be recalculated by hand from Tables 1 and 2, and see online Appendix Tables F–I. Variable names (t_1, t_2, and m_2) and formulae used to calculate them correspond with those shown in Figure 2.
lights the importance of going beyond reporting changes in treatment effect sizes over time, and investigating patterns in well-defined groups of children’s postintervention trajectories to test specific hypotheses about why treatment effects decline postintervention. We are not the first to have made this point; for example, previous researchers have used longitudinal data analysis to demonstrate that fadeout of early mathematics intervention treatment effects is not attributable to decreasing achievement in the treatment group (Clements et al., 2013; Smith, Cobb, Farran, Cordray, & Munter, 2012). However, the current study’s findings point to the usefulness of subgroup analyses for testing theories about learning and development.

Our results point to the importance of factors other than children’s immediately preceding mathematics achievement for explaining children’s mathematics learning. However, the exact set of skills and environments contributing to individual differences in children’s mathematics achievement across development is not fully understood. Correlational studies do not always include the same set of control measures, and include measures of cognitive skills, noncognitive skills, and SES that differ substantially in quality across data sets. We emphasize a need for further clarification of the mechanisms underlying the stability of individual differences in children’s mathematics achievement across time, along with an understanding of the malleability of these factors at different points in development.

Understanding the cognitive processes underlying preexisting differences in children’s later mathematics achievement might have especially practical implications for educators. For example, perhaps children from the treatment and control groups, matched on their posttest achievement scores, differ in the depth and fragility of their mathematics knowledge. Children in the treatment group had steeper learning trajectories during the treatment period, on average. This may imply that their knowledge at the posttest is more recent, less consolidated, and therefore perhaps more prone to forgetting and interference (Wixted, 2004) than the knowledge of posttest matched controls. If so, both additional practice and more explicit connections between previously and later learned material may help children to compensate for preexisting differences putting them at risk for persistently low mathematics achievement.

The possibility of finding subsequent environments that might lead to the persistence of early treatment effects is appealing, and we encourage future work in this area. One condition that might lead to impact persistence is when subsequent environments are intentionally designed to build on knowledge children gain in a previous intervention: this follows from the idea that children’s learning trajectories should guide mathematics pedagogy (Clements & Sarama, 2004, 2014). Indeed, previously reported findings that children’s mathematics achievement remained somewhat higher in the Building Blocks with follow-through intervention condition than the group that only received Building Blocks in preschool (Clements et al., 2013) suggest the possibility that treatment effects of early interventions will persist longer when interventions are integrated with a curriculum designed to be cumulative across years.

However, because there was no group that received a cumulative curriculum without the initial treatment, we cannot test whether the professional development designed to facilitate a cumulative curriculum moderated the treatment effect, produced a second treatment effect on its own, or both. Future work that rerandomizes children from the control group and treatment group into different types of subsequent environments would allow for a direct test of whether different types of subsequent environments contribute to treatment effect fadeout or persistence.

Implications for Practice

A practical implication of the present study is that subsequent higher-quality learning experiences from preschool into elemen-
tary may be necessary for children who received an early intervention to sustain their relative achievement advantages. In other words, interventions, which temporarily compensate for children’s preexisting differences in skills and environments that put them at risk for persistently low achievement, may need to be sustained to produce lasting effects. However, there are trade-offs to intensive, sustained targeted interventions aimed at a specific population (e.g., children at risk for persistently low mathematics achievement) as opposed to universal interventions. Some have argued that targeted programs are less efficient than universal programs in that targeted programs may not reach all the children they seek to serve (Barnett, Brown, & Shore, 2004). The ideal policy decision depends on the costs and benefits associated with boosting only at-risk children’s achievement, compared with also typically achieving children’s achievement. We will not attempt a cost-benefit analysis here, but hope that an understanding of the mechanisms underlying fadeout might help inform practitioners about which programs and policies are likely to lead to the most persistent effects on children’s mathematics achievement.

We stress that we are not arguing that schools do not matter. Improving school quality, across schooling, may improve academic achievement for all children, regardless of their previous math achievement. Furthermore, even if early mathematics intervention may be insufficient for demonstrating substantial long-term mathematics achievement gains, it may still be necessary (Bailey et al., 2014).

Limitations and Future Directions

The current study has several limitations that should be addressed. First, our results apply to the observed range of environments—changes in school quality mean or variance could change these estimates. For example, perhaps greatly improved schooling would substantially decrease the magnitude of fadeout. Indeed, Jenkins’ and colleagues’ (2015) failure to find moderation of treatment effect persistence by school quality also relied on existing variation in school quality for disadvantaged children and is subject to the same criticism. Certainly, to the extent that it would be economically feasible, we support policies that would raise school quality to levels that fall outside of the existing range for disadvantaged children in the United States.

Second, our sample included a somewhat homogenous group of children, because the TRIAD intervention was aimed at improving the mathematics achievement and learning of children in low-resource communities who were at risk for persistently low levels of achievement. It is possible that in a more representative sample, a different proportion of fadeout (possibly more) would be attributable to preexisting differences. In addition, we found significant differences between children who remained in our sample throughout the study time period and those who attrited before the kindergarten follow-up assessment. Because we matched all treatment children to control children based on postintervention mathematics skills, differential attrition in the treatment group may bias our results. As shown in, attrited treatment group children were more disadvantaged than those who remained in our analysis sample. Therefore, our results may underestimate the proportion of fadeout because of preexisting differences.

Because of the possible nonrepresentativeness of the schools and children in the current study, we encourage others to test the generalizability of our findings by replicating our analysis across different interventions, samples, and age groups. The analysis requires a dataset with at least three time points (pretest before the intervention, posttest immediately following the intervention, and follow-up assessment sometime after); there must be an initial treatment effect, and this effect must have faded out over time; and the outcome measure must not show a ceiling effect at the follow-up assessment (a measurement artifact that would create the illusion of a constraining content effect). Ideally, the assessment given at the posttest and follow-up should be on the same scale, which allows for the estimation of a fadeout effect and preexisting differences effect (Figure 2) on the same scale.

Finally, as noted previously, our measures of preexisting differences are heavily focused on prior achievement and skills. We did not have any measures of time-varying differences in children’s family experiences (e.g., job loss) that may have contributed to mathematics achievement learning trajectories. A better understanding of exactly which preexisting differences contribute to the stability and change in individual differences in children’s mathematics achievement over time and the malleability of these factors has important implications for theories and practice related to children’s mathematics learning.

References

Received August 14, 2015
Revision received May 5, 2016
Accepted June 21, 2016